Detecting communities, and labeling nodes, is a ubiquitous problem in the study of networks. Recently, we developed scalable Belief Propagation algorithms that update probability distributions of node labels until they reach a fixed point. In addition to being of practical use, these algorithms can be studied analytically, revealing phase transitions in the ability of any algorithm to solve this problem. Specifically, there is a detectability transition in the stochastic block model, below which no algorith
آی-ویدئو